If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(12a)^2+36a=0
a = 12; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·12·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*12}=\frac{-72}{24} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*12}=\frac{0}{24} =0 $
| 2-2(1+v)=-7v+40 | | -u+78=204 | | 8x-16=2x+2+3x+6 | | 102-(-4x+5(4x-2)=0 | | -41+2x=7x+89 | | x5-6=5 | | -3|2x-7|=21 | | -8=+6+n | | 15+x4=3x15 | | -6+2(x+4)=24 | | -5/3+1/3n=-10 | | 2h+10=6 | | 20-7s=-8s | | 39-v=220 | | 6x+18+9x+12=90 | | 60+10x=-5x+6(8+3x) | | -3+r/8=-2 | | -113-13x=211-x | | -2x=-(4x+9) | | 5(x+1)=4(x+2)+x-3 | | -13+3x=3x-7 | | 5b^2+2b^2=96 | | 11-3x=8x-4 | | 6x+17+9x+12=90 | | 2-4x=-5(x+1) | | -8x+4=7x-26 | | -9+2x-2=0 | | -7-3x=8+2× | | 1+8m-5m=2+4m+6 | | 102=-4x+5(4x-2 | | 6x-5/4=x+1/2 | | 8(n+1)=4(n+4) |